Emotion Detection Through Facial Feature Recognition
نویسنده
چکیده
Humans share a universal and fundamental set of emotions which are exhibited through consistent facial expressions. An algorithm that performs detection, extraction, and evaluation of these facial expressions will allow for automatic recognition of human emotion in images and videos. Presented here is a hybrid feature extraction and facial expression recognition method that utilizes Viola-Jones cascade object detectors and Harris corner key-points to extract faces and facial features from images and uses principal component analysis, linear discriminant analysis, histogram-of-oriented-gradients (HOG) feature extraction, and support vector machines (SVM) to train a multi-class predictor for classifying the seven fundamental human facial expressions. The hybrid approach allows for quick initial classification via projection of a testing image onto a calculated eigenvector, of a basis that has been specifically calculated to emphasize the separation of a specific emotion from others. This initial step works well for five of the seven emotions which are easier to distinguish. If further prediction is needed, then the computationally slower HOG feature extraction is performed and a class prediction is made with a trained SVM. Reasonable accuracy is achieved with the predictor, dependent on the testing set and test emotions. Accuracy is 81% with contempt, a very difficult-to-distinguish emotion, included as a target emotion and the run-time of the hybrid approach is 20% faster than using the HOG approach exclusively.
منابع مشابه
Facial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملEmotion Detection Using Facial Expressions -A Review
Facial expressions give important information about emotions of a person. Understanding facial expressions accurately is one of the challenging tasks for interpersonal relationships. Automatic emotion detection using facial expressions recognition is now a main area of interest within various fields such as computer science, medicine, and psychology. HCI research communities also use automated ...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملDetection and Recognition of Facial Emotion using Bezier Curves
Extracting and understanding of emotion is of high importance for the interaction among human and machine communication systems. The most expressive way to display the human’s emotion is through facial expression analysis. This paper presents and implements an automatic extraction and recognition method of facial expression and emotion from still image. There are two steps to recognize the faci...
متن کاملFacial Landmarking Localization for Emotion Recognition Using Bayesian Shape Models
This work presents a framework for emotion recognition, based in facial expression analysis using Bayesian Shape Models (BSM) for facial landmarking localization. The Facial Action Coding System (FACS) compliant facial feature tracking based on Bayesian Shape Model. The BSM estimate the parameters of the model with an implementation of the EM algorithm. We describe the characterization methodol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016